Answer:
![\int x(8-x)^(3/2)dx= -(16)/(5) (8-x)^{(5)/(2)} +(2)/(7) (8-x)^{(7)/(2)} +C](https://img.qammunity.org/2021/formulas/mathematics/college/jt0x8zranhx8k1z1zhlz3qnbqy699cj0mf.png)
Explanation:
For this case we need to find the following integral:
![\int x(8-x)^(3/2)dx](https://img.qammunity.org/2021/formulas/mathematics/college/wws126antnnmfd01f7ptqq5eq0fzhj1ww4.png)
And for this case we can use the substitution
from here we see that
, and if we solve for x we got
, so then we can rewrite the integral like this:
![\int x(8-x)^(3/2)dx= \int (8-u) u^(3/2) (-du)](https://img.qammunity.org/2021/formulas/mathematics/college/azylzce45ddmmgh2ohejxitvvuh2fk9hsv.png)
And if we distribute the exponents we have this:
![\int x(8-x)^(3/2)dx= - \int 8 u^(3/2) + \int u^(5/2) du](https://img.qammunity.org/2021/formulas/mathematics/college/98ghqog9to8er9g8cux46t60z0en289h7x.png)
Now we can do the integrals one by one:
![\int x(8-x)^(3/2)dx= -8 (u^(5/2))/((5)/(2)) + (u^(7/2))/((7)/(2)) +C](https://img.qammunity.org/2021/formulas/mathematics/college/xueacaxrkykf0125abdm0qwc60cysyba0o.png)
And reordering the terms we have"
![\int x(8-x)^(3/2)dx= -(16)/(5) u^{(5)/(2)} +(2)/(7) u^{(7)/(2)} +C](https://img.qammunity.org/2021/formulas/mathematics/college/jvkkw8790tvpkcp1fj7rmqws4x6cr7huhg.png)
And rewriting in terms of x we got:
![\int x(8-x)^(3/2)dx= -(16)/(5) (8-x)^{(5)/(2)} +(2)/(7) (8-x)^{(7)/(2)} +C](https://img.qammunity.org/2021/formulas/mathematics/college/jt0x8zranhx8k1z1zhlz3qnbqy699cj0mf.png)
And that would be our final answer.