Answer:
![f^(-1)(x)=(1)/(2)\sqrt{(x)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/iwjn9g1iwcqcnddwq9f2uyr9z1fwscrdlx.png)
Explanation:
Given:
The function is given as;
![f(x)=8x^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/vpwbvh1nuipknwhlh5thpw9rev8iep92e6.png)
In order to find the inverse, the steps to be followed are:
Step 1: Replace
by
. This gives,
![y=8x^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/632aoazr5zjdw5wujfc6e0b6rquskbmk2b.png)
Step 2: Switch 'y' by 'x' and 'x' by 'y'. This gives,
![x=8y^2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xoqyhnp5dz6ukeebqa0tk7xqhaayms3urp.png)
Step 3: Solve for 'y'.
Dividing both sides by 8, we get:
![(x)/(8)=(8y^2)/(8)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/51tg20tvkge2ypkxr3u6wtlj66ld4ab5j9.png)
or
![y^2=(x)/(8)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6enxzl2deaktp6l59dojnbux8e90gax279.png)
Taking square root on both sides, we get:
![√(y^2)=\sqrt{(x)/(8)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/v1jg8ltsu7bl2p5cp9uyg9lhclqof2doeb.png)
![y=(1)/(2)\sqrt{(x)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8u91wbn8x2fbxa0meloinasijbg3djvmuo.png)
Now, we replace 'y' by
.
Therefore, the inverse of the given function is:
![f^(-1)(x)=(1)/(2)\sqrt{(x)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/iwjn9g1iwcqcnddwq9f2uyr9z1fwscrdlx.png)