Answer:
B.The series converges because r=1/4
Explanation:
We are given that
![\sum_(k=1)^(\infty)(5k^2)/(4^k)](https://img.qammunity.org/2021/formulas/mathematics/college/a7g6w1gof18j4cfdhn5bffnsk13fw9xpak.png)
We have to find the correct option.
Ratio test :
![\lim_(k\rightarrow\infty) \mid (a_(k+1))/(a_k)\mid =r](https://img.qammunity.org/2021/formulas/mathematics/college/biirvy1j4l5zwjwjjttxasd4es57c30631.png)
If r< 1 then series convergent
If r>1 then the series divergent
If r=1 , test fails
![r=lim_(k\rightarrow \infty)\mid((5(k+1)^2)/(4^(k+1)))/((5k^2)/(4^k))}\mid](https://img.qammunity.org/2021/formulas/mathematics/college/lpgoa7eruvi4i7u0gy6iuij44r3pjmfzjs.png)
![r=\lim_(k\rightarrow \infty)\mid{(5(k+1)^2)/(4^k\cdot 4)*(4^k)/(5k^2)}\mid](https://img.qammunity.org/2021/formulas/mathematics/college/hbzahv2eq503zc8qo110vaodg56s5z8y35.png)
![r=\lim_(k\rightarrow \infty)\mid{((k+1)^2)/(4(k^2))\mid](https://img.qammunity.org/2021/formulas/mathematics/college/wzad0g92oyysbf3b12bsov47pswiq53044.png)
![r=\lim_(k\rightarrow \infty)\mid(k^2(1+(1)/(k))^2)/(4k^2)\mid](https://img.qammunity.org/2021/formulas/mathematics/college/9azd1nzrqhh7b869aosju2iuh0s52om4b9.png)
![r=(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/mwb22mcco179w1slk5u9ghnxaqf5s0wdh0.png)
r<1
Therefore, the series converges .
B.The series converges because r=1/4