229k views
5 votes
A constant friction force of 25 Nacts on a 65 kg skier for 20

s. Whatis the skier's change in velocity?

User Shakhmatov
by
5.9k points

1 Answer

4 votes

Answer:

The skier's change in velocity is 7.69 meters per second.

Step-by-step explanation:

The Newton's second law tells force is equal to the change on the linear momentum of a body:


\sum\overrightarrow{F}=\frac{d\overrightarrow{p}}{dt}

If we approximate the differential
\frac{d\overrightarrow{p}}{dt} to
\frac{\Delta\overrightarrow{p}}{\Delta t}:


\sum\overrightarrow{F}=\frac{\Delta\overrightarrow{p}}{\Delta t}

Using that linear momentum is mass times velocity:


\sum\overrightarrow{F}=\frac{m\Delta\overrightarrow{v}}{\Delta t}

Solving for
\Delta\overrightarrow{v}:


\Delta\overrightarrow{v}=\frac{\Delta t\sum\overrightarrow{F}}{m}=((20\,s)(25\,N))/(65\,kg)


\Delta\overrightarrow{v}=7.69\,(m)/(s)

User Carl Brubaker
by
5.3k points