Answer:
![I=4.47\ kg.m^(2)](https://img.qammunity.org/2021/formulas/physics/college/otith0yl0djghmdv6ddodlreouu58hlbh1.png)
Step-by-step explanation:
Given:
A light meter stick (assuming mass-less) is loaded with point masses at the following positions.
- mass of first object,
![m_1=5\ kg](https://img.qammunity.org/2021/formulas/physics/college/qhk8yco165smlpo65ya1yxiczsyyakuv8n.png)
- mass of second object,
![m_2=3\ kg](https://img.qammunity.org/2021/formulas/physics/college/immk6esu618i5i0xx2jrzb0fhgybrhkcqc.png)
- position of the first mass,
![x_1=36\ cm=0.36\ m](https://img.qammunity.org/2021/formulas/physics/college/mdwlvjmvk4tsvstahp0r9xqd1naxuke3to.png)
- position of the second mass,
![x_2=89\ cm=0.89\ m](https://img.qammunity.org/2021/formulas/physics/college/p5olhgng1efq02w77cgovglyjge7fb32t7.png)
As we know that moment of inertia for point mass is given by:
![I=m.R^2](https://img.qammunity.org/2021/formulas/physics/college/euag8q4uqvbi3dx90gbsfqjc32ifipyi5l.png)
where:
mass of the object
radial distance from the axis of rotation
Now the total moment of inertia:
![I=m_1.x_1^2+m_2.x_2^2](https://img.qammunity.org/2021/formulas/physics/college/w8sb9cppsiix2udkb5j9hor5a5jie90czg.png)
![I=5* 0.36+3* 0.89](https://img.qammunity.org/2021/formulas/physics/college/kroz9pz0f3iecuktfv27i1rhx8lnacq70f.png)
![I=4.47\ kg.m^(2)](https://img.qammunity.org/2021/formulas/physics/college/otith0yl0djghmdv6ddodlreouu58hlbh1.png)