157k views
3 votes
Consider the nonhomogeneous differential

equationy"-2y'-3y=2(e^(3x)).
Find a paricular solution to the non homogeneous equation.
also write the general solutiong to the
nonhomogeneousequation.

1 Answer

6 votes

Answer:


c_1e^(3x)+c_2e^(-x)+(1)/(2) xe^(3x)

Explanation:

For homogeneous solution:


y''-2y'-3=0\\r^2-2r-3=0\\(r-3)(r+1)=0

So since roots are r = 3 and r = -1,
y_h=c_1e^(3x)+c_2e^(-x)

Since we are given
2e^(3x), we will use undetermined coefficients. However, here the trick is we have
c_1e^(3x) in homogeneous solution. So in particular solution, as undetermined coefficients, we will use
Axe^(3x) instead of
Ae^(3x).

Hence,


Y = Axe^(3x)\\Y' = Ae^(3x) + 3Axe^(3x)\\Y'' = 3Ae^(3x) + 3Ae^(3x) + 9Axe^(3x) = 6Ae^(3x) + 9Axe^(3x)

So,


6Ae^(3x)+9Axe^(3x)-2Ae^(3x)-6Axe^(3x)-3Axe^(3x)=2e^(3x)\\4Ae^(3x)=2e^(3x)\\A=(1)/(2)

Hence,
y_p = (1)/(2) xe^(3x)

General solution is:


y=y_h+y_p=c_1e^(3x)+c_2e^(-x)+(1)/(2) xe^(3x)

User Rodvlopes
by
5.1k points