230k views
3 votes
Use a half -angle formula to find sin pi/8 exactly.

User Thordax
by
2.9k points

1 Answer

3 votes

Answer:


\sin \left((\pi )/(8)\right)=\frac{\sqrt{2-√(2)}}{2}

Explanation:

To find the exactly value of
\sin \left((\pi )/(8)\right) you must:

Step 1: Write
\sin \left((\pi )/(8)\right) as
\sin \left(((\pi )/(4))/(2)\right)

Step 2: Use the half angle identity
\sin \left((x)/(2)\right)=\sqrt{(1-\cos \left(x\right))/(2)}


\sqrt{(1-\cos \left((\pi )/(4)\right))/(2)}

Step 3: Use the following identity
\cos \left((\pi )/(4)\right)=(√(2))/(2)


\sqrt{(1-(√(2))/(2))/(2)}

Step 4: Simplify


(1-(√(2))/(2))/(2)=(2-√(2))/(4)\\\\\sqrt{(2-√(2))/(4)}\\\\\mathrm{Apply\:radical\:rule\:}\sqrt[n]{(a)/(b)}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\\\\\frac{\sqrt{2-√(2)}}{√(4)}\\\\\frac{\sqrt{2-√(2)}}{2}

User Kerrigan
by
3.4k points