Answer:
dy/dx = -x/(2y)
d²y/dx² = (-2y² − x²) / (4y³)
Explanation:
x² + 2y² = 16
Take implicit derivative once:
2x + 4y dy/dx = 0
4y dy/dx = -2x
dy/dx = -x/(2y)
Take derivative a second time:
d²y/dx² = [ (2y) (-1) − (-x) (2 dy/dx) ] / (2y)²
d²y/dx² = (-2y + 2x dy/dx) / (4y²)
d²y/dx² = (-2y + 2x (-x/(2y))) / (4y²)
d²y/dx² = (-2y − x²/y) / (4y²)
d²y/dx² = (-2y² − x²) / (4y³)