Answer:
![-(1)/(4) sin(x)+(1)/(6) sin(3x)-(1)/(20) sin(5x)+C](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5o6p65376soefunb3o08teg21wk40n8dmd.png)
Explanation:
We begin with the integral
![\int{sin^2(x)cos(3x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/middle-school/o37jgvux92mt39dnwsw4cwd4jpu3ngd0x8.png)
First, we can apply the power reducing formula to
![sin^2(x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ibroue15n6jl0lprgvb9z9bx7hw969gnzg.png)
This formula states:
![sin^2(x)=(1)/(2) -(1)/(2) cos(2x)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xax4nory2ahraz3hbf9bav1jn32ef2evcb.png)
This gives us
![\int{((1)/(2) -(1)/(2) cos(2x))(cos(3x)} \, dx \\\\\int{((1)/(2)cos(3x) -((1)/(2) cos(2x)cos(3x)} \, dx \\\\(1)/(2) \int{cos(3x)} \, dx -(1)/(2) \int{cos(2x)cos(3x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/middle-school/noxcpygkxpuganlub64anggod0mbmopcdm.png)
Now, we can use integrate the first integral
![(1)/(2) \int{cos(3x)} \, dx\\u=3x\\du=3dx\\\\(1)/(6) \int{3cos(u)} \, du\\\\(1)/(6) sin(u)+C\\\\(1)/(6) sin(3x)+C](https://img.qammunity.org/2021/formulas/mathematics/middle-school/oirek0tcbfravs7genv3tepnhii27x6a2a.png)
And now we can begin to integrate the second
![-(1)/(2) \int{cos(2x)cos(3x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/middle-school/q72klw6d2b8jlp47yr4uxo51w6akuv5gxq.png)
To integrate this, we need to use the Product-to-sum formula, which states
. For this formula, we will use
![\alpha =3x\\\beta =2x](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5c0xnqbcp7sxly05px9yt1ds0exkupq46b.png)
This gives us
![-(1)/(2) \int{(1)/(2)[cos(5x)+cos(x)] } \, dx \\\\-(1)/(4) \int{[cos(5x)+cos(x)] } \, dx\\\\-(1)/(4)\int{cos(5x)} \, dx -(1)/(4)\int{cos(x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rgac9poj83b4dlb3326le4ivrmrx73md5r.png)
We can then use the same process of u-substitution as the previous to get the answer of
![-(1)/(20) sin(5x)-(1)/(4) sin(x)+C](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cxehq5v4aqq5vpelnn2zs5f9afojbf3bkr.png)
Lastly, we can add the values of the two integrals together to give us the final solution of
![-(1)/(4) sin(x)+(1)/(6) sin(3x)-(1)/(20) sin(5x)+C](https://img.qammunity.org/2021/formulas/mathematics/middle-school/5o6p65376soefunb3o08teg21wk40n8dmd.png)