135 cubes are required to fill the prism
Solution:
Given that a rectangular prism with volume of 5 cubic units is filled with cubes with side lengths of
units
Then the number of cubes required to fill the prism will be given by:
![\text { number of cubes }=\frac{\text {volume of rectangular prism}}{\text {volume of cube}}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/uely1mrpkgu92vy1sl2qd64ynh4d411egt.png)
Volume of rectangular prism = 5 cubic units
![\text{ Volume of cube}=(\text { side })^(3)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1ci8qwg9bb7d56x1clg7iptjzxzqp32o6b.png)
![\text { Volume of cube }=\left((1)/(3)\right)^(3)=(1)/(27)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/abq2etgf7dqesyy4ry4xb0w7q9gkoukwnp.png)
Therefore number of cubes required to fill the prism are:
![\text { number of cubes }=(5)/((1)/(27))=5 * 27=135](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r0dy88e6lo0dzsbn9np812415ghufnxi8z.png)
Therefore 135 cubes are required to fill the prism