9.5k views
2 votes
Consider the following function. Without finding the​ inverse, evaluate the derivative of the inverse at the given point. f(x)=ln(8x+e); (1,0)

User Kash
by
8.5k points

1 Answer

5 votes

We can use the inverse function derivative theorem:


\frac{\textrm{d}f^(-1)}{\textrm{d}x}\Big\vert_(x=a) = \frac{1}{\frac{\textrm{d}f}{\textrm{d}x}\Big\vert_(x=f^(-1)(a))}.

In this case, we want to evaluate
\frac{\textrm{d}f^(-1)}{\textrm{d}x}\Big\vert_(x=1), so:


\frac{\textrm{d}f^(-1)}{\textrm{d}x}\Big\vert_(x=1) = \frac{1}{\frac{\textrm{d}f}{\textrm{d}x}\Big\vert_(x=f^(-1)(1))}.

The derivative is:


\frac{\textrm{d}f}{\textrm{d}x} = \frac{\textrm{d}}{\textrm{d}x}\left[\ln(8x + \textrm{e})\right] = \frac{1}{8x+\textrm{e}}\frac{\textrm{d}}{\textrm{d}x}\left(8x + \textrm{e}\right) = \frac{8}{8x+\textrm{e}}.

The ordinate of the point is
f^(-1)(1) = 0, so we evaluate:


\frac{\textrm{d}f}{\textrm{d}x}\Big\vert_(x=0) = \frac{8}{8 * 0+\textrm{e}} = \frac{8}{\textrm{e}}.

Finally:


\frac{\textrm{d}f^(-1)}{\textrm{d}x}\Big\vert_(x=1) = \frac{1}{\frac{\textrm{d}f}{\textrm{d}x}\Big\vert_(x=f^(-1)(1))} = \frac{1}{\frac{\textrm{d}f}{\textrm{d}x}\Big\vert_(x=0)} = \frac{1}{\frac{8}{\textrm{e}}} = \frac{\textrm{e}}{8}.

We can check the answer by finding the inverse:


y = \ln(8x + \textrm{e}) \implies \textrm{e}^y = 8x + \textrm{e} \iff \textrm{e}^y - \textrm{e} = 8x \iff x = \frac{\textrm{e}^y-\textrm{e}}{8},

so that


f^(-1)(x) = \frac{\textrm{e}^x-\textrm{e}}{8}.

Therefore:


\frac{\textrm{d}f^(-1)}{\textrm{d}x} = \frac{\textrm{e}^x}{8}.

Which finally gives the same answer as before:


\frac{\textrm{d}f^(-1)}{\textrm{d}x}\Big\vert_(x=1) = \frac{\textrm{e}^1}{8} = \frac{\textrm{e}}{8}.

Answer:
\boxed{\frac{\textrm{d}f^(-1)}{\textrm{d}x}\Big\vert_(x=1) = \frac{\textrm{e}}{8}}.

User Roland Pheasant
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories