Answer:
A) The charge accumulated on upper plate for t>0 is
![q(t)=50[1-e^(-2500t)]\mu C](https://img.qammunity.org/2021/formulas/engineering/college/q2alm4j20m8fq5m072xuvhcpwcw0fsd5dp.png)
B) The total charge that accumulates at the upper terminal is 50μC
C) If the current is stopped at t = 0.5 ms then total charge stored on upper terminal is 35.67μC
Step-by-step explanation:
Given that:
![I(t)=0 \quad \quad \quad \quad \quad t<0\\\\I(t)= 125e^(-2500t) \quad t\geq 0](https://img.qammunity.org/2021/formulas/engineering/college/yqzial7ybainyp6ywo542dqqkj87omkinn.png)
A) The charge that accumulates at the upper terminal for t > 0:
As we know
![q(t)=\int {I(t)} \, dt](https://img.qammunity.org/2021/formulas/engineering/college/en324g7lvm980amwadqp7n65fyl9yeln3f.png)
for t > 0
![q(t)=\int\limits^t_0 {I(t)} \, dt\\q(t)=\int\limits^t_0 {125e^(-2500t) mA} \, dt\\q(t)=(125* 10^(-3))[(e^(-2500t))/(-2500)]^(t)_(0)\\\\q(t)=( 50* 10^(-6))[-e^(-2500t)]^(t)_(0)\\\\q(t)=( 50* 10^(-6))[-e^(-2500t)+1]\\\\](https://img.qammunity.org/2021/formulas/engineering/college/38lntkt0vjuiqs85wt8vtuguhr3uehu2jz.png)
The charge accumulated on upper plate for t>0 is
![q(t)=50[1-e^(-2500t)]\mu C---(1)](https://img.qammunity.org/2021/formulas/engineering/college/k124lgs24j7z0cyx96jbuf0n0qu70umdcz.png)
B) The total charge that accumulates at the upper terminal can be found by substituting t → ∞ in equation (1)
![q(t)=( 50* 10^(-6))[1-e^(-2500(\infty))]\\q(t)=(50* 10^(-6))[1-0]\\q(t) =50\mu C](https://img.qammunity.org/2021/formulas/engineering/college/g1jvcp5r8dkafaz42z9vdvvd32efmgmzfx.png)
C) If the current is stopped at t = 0.5 ms then
![q(t)=( 50* 10^(-6))[1-e^{-2500(0.5*10^(-3))}]\\q(0.5ms)=35.67\mu C](https://img.qammunity.org/2021/formulas/engineering/college/5ri1wy00scsaldr6h5py3mfr4krdic2a16.png)