Answer:
D. 348
Explanation:
The volume of the square prisma is given by the following formula:
![V = s^(2)h](https://img.qammunity.org/2021/formulas/mathematics/college/2g10fjwfb56kks5gbqd4qyqwjd3ir4sj40.png)
In which h is the height, and s is the side of the base.
Let's use implicit derivatives to solve this problem:
![(dV)/(dt) = 2sh(ds)/(dt) + s^(2)(dh)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/4v33q66ytnz91rabzoad548exqnu3iz1s0.png)
In this problem, we have that:
![(ds)/(dt) = 5, (dh)/(dt) = -2, h = 7, s = 6](https://img.qammunity.org/2021/formulas/mathematics/college/e7t938jf1xuprhgm3pii3xb2pxxfd2xtwa.png)
So
![(dV)/(dt) = 2sh(ds)/(dt) + s^(2)(dh)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/4v33q66ytnz91rabzoad548exqnu3iz1s0.png)
![(dV)/(dt) = 2*6*7*5 + (6)^(2)*(-2) = 348](https://img.qammunity.org/2021/formulas/mathematics/college/gw364l5dsesfjjufzqo48ltho4bmdq6xfj.png)
So the correct answer is:
D. 348