37.4k views
0 votes
How do I find the inverse?

How do I find the inverse?-example-1
User Russ
by
3.5k points

1 Answer

6 votes

g(x) as given has no inverse because there are instances of two x values giving the same value of g(x). For instance,

x = -1 ⇒ g(-1) = 4 (-1 + 3)² - 8 = 8

x = -5 ⇒ g(-5) = 4 (-5 + 3)² - 8 = 8

Only a one-to-one function can have an inverse. g(x) is not one-to-one.

However, if we restrict the domain of g(x), we can find an inverse over that domain. Let
g^(-1)(x) be the inverse of g(x). Then by definition of inverse function,


g\left(g^(-1)(x)\right) = 4 \left(g^(-1)(x) + 3\right)^2 - 8 = x

Solve for the inverse:


4 \left(g^(-1)(x) + 3\right)^2 - 8 = x


4 \left(g^(-1)(x) + 3\right)^2 = x + 8


\left(g^(-1)(x) + 3\right)^2 = \frac{x + 8}4


\sqrt{\left(g^(-1)(x) + 3\right)^2} = \sqrt{\frac{x + 8}4}


\left| g^(-1)(x) + 3 \right| = \frac{√(x+8)}2

Recall the definition of absolute value:


|x| = \begin{cases}x &amp; \text{if }x\ge0\\-x&amp;\text{if }x<0\end{cases}

This means there are two possible solutions for the inverse of g(x) :

• if
g^(-1)(x) + 3 \ge 0, then


g^(-1)(x) + 3 = \frac{√(x+8)}2 \implies g^(-1)(x) = -3+\frac{√(x+8)}2

• otherwise, if
g^(-1)(x)+3<0, then


-\left(g^(-1)(x) + 3\right) = \frac{√(x+8)}2 \implies g^(-1)(x) = -3-\frac{√(x+8)}2

Which we choose as the inverse depends on how we restrict the domain of g(x). For example:

Remember that the inverse must satisfy


g\left(g^(-1)(x)\right) = x

In the first case above,
g^(-1)(x) + 3 \ge 0, or
g^(-1)(x) \ge -3. This suggests that we could restrict the domain of g(x) to be
x \ge -3.

Then as long as
x \ge -3, the inverse is


g^(-1)(x) = -3+\frac{√(x+8)}2

User Cuducos
by
4.0k points