37.4k views
0 votes
How do I find the inverse?

How do I find the inverse?-example-1
User Russ
by
8.2k points

1 Answer

6 votes

g(x) as given has no inverse because there are instances of two x values giving the same value of g(x). For instance,

x = -1 ⇒ g(-1) = 4 (-1 + 3)² - 8 = 8

x = -5 ⇒ g(-5) = 4 (-5 + 3)² - 8 = 8

Only a one-to-one function can have an inverse. g(x) is not one-to-one.

However, if we restrict the domain of g(x), we can find an inverse over that domain. Let
g^(-1)(x) be the inverse of g(x). Then by definition of inverse function,


g\left(g^(-1)(x)\right) = 4 \left(g^(-1)(x) + 3\right)^2 - 8 = x

Solve for the inverse:


4 \left(g^(-1)(x) + 3\right)^2 - 8 = x


4 \left(g^(-1)(x) + 3\right)^2 = x + 8


\left(g^(-1)(x) + 3\right)^2 = \frac{x + 8}4


\sqrt{\left(g^(-1)(x) + 3\right)^2} = \sqrt{\frac{x + 8}4}


\left| g^(-1)(x) + 3 \right| = \frac{√(x+8)}2

Recall the definition of absolute value:


|x| = \begin{cases}x &amp; \text{if }x\ge0\\-x&amp;\text{if }x<0\end{cases}

This means there are two possible solutions for the inverse of g(x) :

• if
g^(-1)(x) + 3 \ge 0, then


g^(-1)(x) + 3 = \frac{√(x+8)}2 \implies g^(-1)(x) = -3+\frac{√(x+8)}2

• otherwise, if
g^(-1)(x)+3<0, then


-\left(g^(-1)(x) + 3\right) = \frac{√(x+8)}2 \implies g^(-1)(x) = -3-\frac{√(x+8)}2

Which we choose as the inverse depends on how we restrict the domain of g(x). For example:

Remember that the inverse must satisfy


g\left(g^(-1)(x)\right) = x

In the first case above,
g^(-1)(x) + 3 \ge 0, or
g^(-1)(x) \ge -3. This suggests that we could restrict the domain of g(x) to be
x \ge -3.

Then as long as
x \ge -3, the inverse is


g^(-1)(x) = -3+\frac{√(x+8)}2

User Cuducos
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories