Answer:
DL = 34 cm
AL = 17 cm
∠DLA = 60°
∠ADL = 30°
Explanation:
Given:
- DL = (2x + 10) cm
- MA = (3x - 2) cm
DL ≅ MA
⇒ 2x + 10 = 3x - 2
⇒ 2x + 12 = 3x
⇒ 12 = x
Substituting found value of x into expressions for DL and AL:
DL = 2x + 10
= 2(12) + 10
= 34 cm
AL = x + 5
= 12 + 5
= 17 cm
The only way for ΔMAL to be a right triangle, with MA = 34 cm, AL = 17 cm and ∠M = 30° is if
- MA is the hypotenuse
- AL is the shortest side
Given:
Sum of interior angles of a triangle is 180°
⇒ ∠DLA + 30° + 90° = 180°
⇒ ∠DLA + 120° = 180°
⇒ ∠DLA = 60°
As ∠M = ∠D = 30°, then ∠ADL = 30°