70.4k views
3 votes
What is the derivative of 1/square root 4x.

1 Answer

3 votes

Answer:


\displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = \frac{-1}{4x^\bigg{(3)/(2)}}

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

Exponential Properties

  • Exponential Property [Rewrite]:
    \displaystyle b^(-m) = (1)/(b^m)
  • Exponential Property [Root Rewrite]:
    \displaystyle \sqrt[n]{x} = x^{(1)/(n)}

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Explanation:

Step 1: Define

Identify.


\displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg]

Step 2: Differentiate

  1. Simplify:
    \displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = \bigg( (1)/(2√(x)) \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:
    \displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = (1)/(2) \bigg( (1)/(√(x)) \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:
    \displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = (1)/(2) \bigg( \frac{1}{x^\Big{(1)/(2)}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:
    \displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = (1)/(2) \bigg( x^\bigg{(-1)/(2)} \bigg)'
  5. Derivative Rule [Basic Power Rule]:
    \displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = (1)/(2) \bigg( (-1)/(2) x^\bigg{(-3)/(2)} \bigg)
  6. Simplify:
    \displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = (-1)/(4) x^\bigg{(-3)/(2)}
  7. Rewrite [Exponential Rule - Rewrite]:
    \displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = \frac{-1}{4x^\bigg{(3)/(2)}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

User Cheng Sun
by
6.6k points