Answer:
![\displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = \frac{-1}{4x^\bigg{(3)/(2)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/4jc5hc9p4az8s0dcevtwqg8hlzmuff0eip.png)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
Exponential Properties
- Exponential Property [Rewrite]:

- Exponential Property [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{(1)/(n)}](https://img.qammunity.org/2022/formulas/mathematics/college/yqpyvbuov0tgbjo8vla0qsqp67pafn2fr7.png)
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Explanation:
Step 1: Define
Identify.
![\displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg]](https://img.qammunity.org/2022/formulas/mathematics/high-school/np6dr6nomn2a5fuk4ewtrssoxutgxduxin.png)
Step 2: Differentiate
- Simplify:
![\displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = \bigg( (1)/(2√(x)) \bigg)'](https://img.qammunity.org/2022/formulas/mathematics/high-school/tx4c9rw6cu6gble0o88u6qbh09jpevbzs3.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = (1)/(2) \bigg( (1)/(√(x)) \bigg)'](https://img.qammunity.org/2022/formulas/mathematics/high-school/w6m1pnun99lacdujjsczm9cx4h982thk7y.png)
- Rewrite [Exponential Rule - Root Rewrite]:
![\displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = (1)/(2) \bigg( \frac{1}{x^\Big{(1)/(2)}} \bigg)'](https://img.qammunity.org/2022/formulas/mathematics/high-school/cepnxzqxb2og2gtfi1zyaeu57sj48eljgr.png)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = (1)/(2) \bigg( x^\bigg{(-1)/(2)} \bigg)'](https://img.qammunity.org/2022/formulas/mathematics/high-school/xwcs9n6jz3rsv58ewst8610spe6pjbouzg.png)
- Derivative Rule [Basic Power Rule]:
![\displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = (1)/(2) \bigg( (-1)/(2) x^\bigg{(-3)/(2)} \bigg)](https://img.qammunity.org/2022/formulas/mathematics/high-school/3nflvyuhae6pnkf6tfolgsb80p6508slkr.png)
- Simplify:
![\displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = (-1)/(4) x^\bigg{(-3)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/cy0ttrtexlou1rkx7cxr7ncr7dzgswfz6y.png)
- Rewrite [Exponential Rule - Rewrite]:
![\displaystyle (d)/(dx) \bigg[ (1)/(√(4x)) \bigg] = \frac{-1}{4x^\bigg{(3)/(2)}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/4jc5hc9p4az8s0dcevtwqg8hlzmuff0eip.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation