125k views
21 votes
How can i prove this property to be true for all values of n, using mathematical induction.

ps: spam/wrong answers will be reported and blocked.​

How can i prove this property to be true for all values of n, using mathematical induction-example-1
User HansUp
by
8.7k points

1 Answer

6 votes

Proof -

So, in the first part we'll verify by taking n = 1.


\implies \: 1 = {1}^(2) = (1(1 + 1)(2 + 1))/(6)


\implies{ (1(2)(3))/(6) }


\implies{ 1}

Therefore, it is true for the first part.

In the second part we will assume that,


\: { {1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) = (k(k + 1)(2k + 1))/(6) }

and we will prove that,


\sf{ \: { {1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = \frac{(k + 1)(k + 1 + 1) \{2(k + 1) + 1\}}{6}}}


\: {{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = ((k + 1)(k + 2) (2k + 3))/(6)}


{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = (k (k + 1) (2k + 1) )/(6) + ((k + 1) ^(2) )/(6)


{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = (k(k+1)(2k+1)+6(k+1)^ 2 )/(6)


{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = \frac{(k+1)\{k(2k+1)+6(k+1)\} }{6}


{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = ((k+1)(2k^2 +k+6k+6) )/(6)


{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = ((k+1)(2k^2+7k+6) )/(6)


{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = ((k+1)(k+2)(2k+3) )/(6)

Henceforth, by using the principle of mathematical induction 1²+2² +3²+....+n² = n(n+1)(2n+1)/ 6 for all positive integers n.

_______________________________

Please scroll left - right to view the full solution.

User Godric
by
7.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories