Proof -
So, in the first part we'll verify by taking n = 1.
![\implies \: 1 = {1}^(2) = (1(1 + 1)(2 + 1))/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/sj46z69y71hiu4q2xxp0xuib9yfdpc5wx0.png)
![\implies{ (1(2)(3))/(6) }](https://img.qammunity.org/2023/formulas/mathematics/college/4xhamegy3bjd9mmduqbrkdyp3t0it84af5.png)
![\implies{ 1}](https://img.qammunity.org/2023/formulas/mathematics/college/m9rewe5srhkrcokbtr0oa30dhuc8zabga1.png)
Therefore, it is true for the first part.
In the second part we will assume that,
![\: { {1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) = (k(k + 1)(2k + 1))/(6) }](https://img.qammunity.org/2023/formulas/mathematics/college/t8j1w24fefydabxl9v9a3e8sl154sc1lea.png)
and we will prove that,
![\sf{ \: { {1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = \frac{(k + 1)(k + 1 + 1) \{2(k + 1) + 1\}}{6}}}](https://img.qammunity.org/2023/formulas/mathematics/college/r3o93lhd343kpwmt38nca5jjrohkwtmf0j.png)
![\: {{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = ((k + 1)(k + 2) (2k + 3))/(6)}](https://img.qammunity.org/2023/formulas/mathematics/college/2jeoe68lpes0xpfdekp2ze46uhleyo5yr4.png)
![{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = (k (k + 1) (2k + 1) )/(6) + ((k + 1) ^(2) )/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/tvq1nuqoc28x0vzki6r34pz1d1fbnks68o.png)
![{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = (k(k+1)(2k+1)+6(k+1)^ 2 )/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/11kvat8mw6uk6qtfmoksnj35hxl8ave1s1.png)
![{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = \frac{(k+1)\{k(2k+1)+6(k+1)\} }{6}](https://img.qammunity.org/2023/formulas/mathematics/college/vwcpp6xcsuzks8085wdx25zazenhe8fjf0.png)
![{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = ((k+1)(2k^2 +k+6k+6) )/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/hqtrmq3rnkr0ed8pdmbcak50f8bzczshzv.png)
![{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = ((k+1)(2k^2+7k+6) )/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/2fvrw3m73rmm51kkgy73pldc0dxfg6xji1.png)
![{1}^(2) + {2}^(2) + {3}^(2) + ..... + {k}^(2) + (k + 1)^(2) = ((k+1)(k+2)(2k+3) )/(6)](https://img.qammunity.org/2023/formulas/mathematics/college/w7x3hx59i01rk8k2xgsti6hxfso2yovcg1.png)
Henceforth, by using the principle of mathematical induction 1²+2² +3²+....+n² = n(n+1)(2n+1)/ 6 for all positive integers n.
_______________________________
Please scroll left - right to view the full solution.