182k views
0 votes
26. The width of a rectangle is 64 inches. The length of the rectangle is twice its width What is the perimeter of the rectangle? A 20 inches B. 40 inches c. 30% inches D. 885 inches​

2 Answers

6 votes
W = 64
L = 64*2 = 128

P = (64 * 2) + (128 * 2) = 384
User NewBike
by
7.7k points
2 votes


\large \orange{ \frak{Given :}}


\\

  • Width of rectangle = 64 in.


\\

  • Length of the rectangle is twice its width.


\\ \\


\large \orange{ \frak{To \: find:}}


\\

  • Perimeter of rectangle


\\ \\


\large \orange{ \frak{Solution:}}


\\

We know :-

  • Length = twice of width
  • Length = 2 × width
  • Length = 2 × 64
  • Length =
    \small \bf 128


\\ \\


\large \orange{ \frak{Digram:}}


\\ \\


\tt 64in.\begin{gathered} \small \large\boxed{\begin{array}{cc} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \\ \end{array}}\end{gathered} \\ \: \: \: \: \sf128in.


\\ \\

Formula of perimeter of rectangle:-


\\


\bigstar \boxed{\rm{}perimeter \: of \: rectangle = 2(l + w)}

where :-

l = length of rectangle

w = width of rectangle


\\

So :-


\\


\dashrightarrow\sf{}perimeter \: of \: rectangle = 2(l + w) \\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle = 2(64 + 128) \\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle = 2(64) + 2(128) \\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle = 2 * 64+ 2(128) \\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle =128+ 2(128) \\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle =128+ 2 * 128\\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle =128+ 256\\


\\ \\


\dashrightarrow\bf{}perimeter \: of \: rectangle =384 \: in\\


\\ \\

User Jcolicchio
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories