182k views
0 votes
26. The width of a rectangle is 64 inches. The length of the rectangle is twice its width What is the perimeter of the rectangle? A 20 inches B. 40 inches c. 30% inches D. 885 inches​

2 Answers

6 votes
W = 64
L = 64*2 = 128

P = (64 * 2) + (128 * 2) = 384
User NewBike
by
3.8k points
2 votes


\large \orange{ \frak{Given :}}


\\

  • Width of rectangle = 64 in.


\\

  • Length of the rectangle is twice its width.


\\ \\


\large \orange{ \frak{To \: find:}}


\\

  • Perimeter of rectangle


\\ \\


\large \orange{ \frak{Solution:}}


\\

We know :-

  • Length = twice of width
  • Length = 2 × width
  • Length = 2 × 64
  • Length =
    \small \bf 128


\\ \\


\large \orange{ \frak{Digram:}}


\\ \\


\tt 64in.\begin{gathered} \small \large\boxed{\begin{array}{cc} \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ \\ \\ \\ \end{array}}\end{gathered} \\ \: \: \: \: \sf128in.


\\ \\

Formula of perimeter of rectangle:-


\\


\bigstar \boxed{\rm{}perimeter \: of \: rectangle = 2(l + w)}

where :-

l = length of rectangle

w = width of rectangle


\\

So :-


\\


\dashrightarrow\sf{}perimeter \: of \: rectangle = 2(l + w) \\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle = 2(64 + 128) \\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle = 2(64) + 2(128) \\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle = 2 * 64+ 2(128) \\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle =128+ 2(128) \\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle =128+ 2 * 128\\


\\ \\


\dashrightarrow\sf{}perimeter \: of \: rectangle =128+ 256\\


\\ \\


\dashrightarrow\bf{}perimeter \: of \: rectangle =384 \: in\\


\\ \\

User Jcolicchio
by
4.3k points