Hi there!
The equation for the gravitational potential energy of a mass in orbit is:
![U = -(Gm_om_p)/(r)](https://img.qammunity.org/2022/formulas/physics/college/cdqvqhgd1dnd4aefxn262v2das9c6cskbd.png)
Where:
m₀ = mass of object (kg)
mp = mass of planet (kg)
r = radius (from CENTER of the planet)
G = Gravitational constant
The change of gravitational potential energy is given as:
ΔU = Uf - Ui
Thus, we can calculate each:
Uf:
r = radius of earth + radius of orbit
6,378,000 m + 25,000 m = 6,403,000 m
We can plug in the given values into the equation:
![U_f= -((6.67*10^(-11))(100)(5.976*10^(24)))/(6.403*10^(6)) = -6.225*10^9 J](https://img.qammunity.org/2022/formulas/physics/college/tik64fkhp4p2247tjwuxj5tjjjm2pfhck5.png)
Ui:
r = radius of earth
![U_i= -((6.67*10^(-11))(100)(5.976*10^(24)))/(6.378*10^(6)) = -6.245*10^9 J](https://img.qammunity.org/2022/formulas/physics/college/zmo25icvmff242gtbmdncszo17w8iz7h1z.png)
Subtract:
-6.225 × 10⁹ - (-6.245 × 10⁹) = 2.46 × 10⁷ J