157k views
17 votes
The points 4,0 and 7,6 lie on a particular line, what is its equation in slope - intercept form?

1 Answer

2 votes


(\stackrel{x_1}{4}~,~\stackrel{y_1}{0})\qquad (\stackrel{x_2}{7}~,~\stackrel{y_2}{6}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{6}-\stackrel{y1}{0}}}{\underset{run} {\underset{x_2}{7}-\underset{x_1}{4}}}\implies \cfrac{6}{3}\implies 2 \\\\\\ \begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{0}=\stackrel{m}{2}(x-\stackrel{x_1}{4})\implies y = 2x-8

User John Kocktoasten
by
3.9k points