126,706 views
30 votes
30 votes
3. Determine which of the following functions below have (x + 6) as a factor.

Select all that apply.
( 2x3 - 19x2 - 7x + 294
0 4x3 + 11x2 - 75x + 18
3x3 + 34x2 + 61% -- 210
x3 + 6x2 + 11x + 6
10x3 + 53x2 - 41x + 6

User Jerrymouse
by
2.8k points

1 Answer

20 votes
20 votes

Answer:

B, C, and E

Explanation:

Since x+6 has the root x=-6, we should be getting 0 after plugging it into each expression by the Remainder Theorem:


2x^3-19x^2-7x+294\\2(-6)^3-19(-6)^2-7(-6)+294\\2(-216)-19(36)+42+294\\-432-684+42+294\\-780 <-- remainder isn't 0; A is out


4x^3 + 11x^2 - 75x + 18\\4(-6)^3+11(-6)^2-75(-6)+18\\4(-216)+11(36)+450+18\\-864+396+468\\-864+864\\0<-- remainder IS 0; B is a correct choice


3x^3 + 34x^2 + 61x - 210\\3(-6)^3+34(-6)^2+61(-6)-210\\3(-216)+34(36)-366-210\\-648+1224-366-210\\576-366-210\\210-210\\0<-- remainder IS 0; C is a correct choice


x^3 + 6x^2 + 11x + 6\\(-6)^3+6(-6)^2+11(-6)+6\\-216+6(36)-66+6\\-216+216-60\\-60<-- remainder isn't 0; D is out


10x^3 + 53x^2 - 41x + 6\\10(-6)^3+53(-6)^2-41(-6)+6\\10(-216)+53(36)+246+6\\-2160+1908+252\\-252+252\\0<-- remainder IS 0; E is a correct choice

Thus, the correct choices are B, C, and E.

User Jthegedus
by
2.4k points