![\large\underline{\sf{Solution-}}](https://img.qammunity.org/2022/formulas/mathematics/high-school/auxvkffb37ppkivojcb9qg05yjvnvge1dw.png)
We have to prove that:
![\rm\longmapsto ( \sin(x) - 2 \sin^(3) (x) )/(2 \cos^(3) (x) - \cos(x) ) = \tan(x)](https://img.qammunity.org/2022/formulas/mathematics/college/179lomk8jwylvd86ghl366ge6qmskny3c9.png)
Taking LHS, we get:
![\rm = ( \sin(x) - 2 \sin^(3) (x) )/(2 \cos^(3) (x) - \cos(x) )](https://img.qammunity.org/2022/formulas/mathematics/college/s13py8077lsax0vfg9l5005uwamd4z062l.png)
We can take sin(x) as common from numerator part. We get:
![\rm = \frac{ \sin(x) \{1- 2 \sin^(2) (x) \}}{2 \cos^(3) (x) - \cos(x) }](https://img.qammunity.org/2022/formulas/mathematics/college/yv1sdskv0g7bpc86iuwz09uzwg5bbicdl2.png)
Similarly, we can take cos(x) as common from first two terms. We get:
![\rm = \frac{ \sin(x) \{1- 2 \sin^(2) (x) \}}{ \cos(x) \{ 2 \cos^(2) (x) -1\}}](https://img.qammunity.org/2022/formulas/mathematics/college/149cwgr5j92dyai80m8to5zv2nlj2qgjvj.png)
![\rm = ( \sin(x) )/( \cos(x) ) \cdot \frac{\{1- 2 \sin^(2) (x) \}}{\{ 2 \cos^(2) (x) -1\}}](https://img.qammunity.org/2022/formulas/mathematics/college/8nfbjdroe9oigfsfmp3v9bv7mzcka15qqj.png)
As we know that:
![\rm\longmapsto ( \sin(x) )/( \cos(x) ) = \tan(x)](https://img.qammunity.org/2022/formulas/mathematics/college/pel3syx0c7g2lv5z4ftduvj7b74fzh8xul.png)
We get:
![\rm = \tan(x) \cdot \frac{\{1- 2 \sin^(2) (x) \}}{\{ 2 \cos^(2) (x) -1\}}](https://img.qammunity.org/2022/formulas/mathematics/college/pzm57an5xyglew7umgcdy3ye739s1u5oeo.png)
Now, we will expand the terms in fraction:
![\rm = \tan(x) \cdot \frac{\{1- \sin^(2) (x) - { \sin }^(2)(x) \}}{\{\cos^(2) (x) + \cos^(x)(x) -1\}}](https://img.qammunity.org/2022/formulas/mathematics/college/fybsckjdrg5r69bru2z55f4jcwmdeh1ijv.png)
As we know that:
![\rm \longmapsto \sin^(2)(x)+cos^(2)(x)=1](https://img.qammunity.org/2022/formulas/mathematics/college/wuy99sij1w0kccyw9gkynsg7hnsrjqe271.png)
![\rm \longmapsto\cos^(2)(x)=1-sin^(2)(x)](https://img.qammunity.org/2022/formulas/mathematics/college/yb75g4rs5tw4iqxpz5w5b03xw6vdmbqipe.png)
![\rm \longmapsto\cos^(2)(x) - 1=-sin^(2)(x)](https://img.qammunity.org/2022/formulas/mathematics/college/uiuk4xrxypd1o3vj84azviocmax0r6ej1h.png)
Now substitute the values in the expression, we get:
![\rm = \tan(x)\cdot \frac{ \cos^(2) (x)-{ \sin }^(2)(x)}{\cos^(2) (x) - \sin^(2) (x) }](https://img.qammunity.org/2022/formulas/mathematics/college/opsyjr9rmvpfp98ofdftgw4786z89blvkb.png)
![\rm = \tan(x)\cdot1](https://img.qammunity.org/2022/formulas/mathematics/college/kj059kf7p5spq5dn8ayfhlgxlo6nwwpi0g.png)
![\rm = \tan(x)](https://img.qammunity.org/2022/formulas/mathematics/college/4s9c7hv5cxzzh0rhbdmwu0b251g11lmioi.png)
Here, we notice that LHS = RHS
Proved.