Answer:
M' (-2 , -5), A'(1 , -1), P'(-7 , -1)
Explanation:
Rotation clockwise 90° = rotation CCW 270°
Formula for rotation CCW 270° around a point (x',y') for original (x,y)
x'' = (x-x') cos 270° - (y-y') sin 270° + x'
y'' = (x-x') sin 270° + (y-y') cos 270° + y'
cos 270° = 0 and sin 270° = -1
x'' = - (y-y') sin 270° + x' = (y-y') + x'
y'' = (x-x') sin 270° + y' = (x'-x) + y'
M': x = (4 - -1) + (-7) = -2
y = (-7 - -3) + (-1) = -5
A': x = (7 - -1) + (-7) = 1
y = (-7 - -7) + (-1) = -1
check
P': x = (-1 - -1) + (-7) = -7
y = (-7 - -7) + (-1) = -1
-------------------------------------------------
Another way of thinking is to suppose P is (0,0) and locate other points' coordinate relative to P. Such as M(4,5), A(0,8)..
when it rotate CW 90° (x,y) -> (y , -x) will becomes (5 , -4) and (8 , 0). while (5 , -4) relative to p(-7 , -1) is (-7+5 , -1-4) i.e. ( -2 , -5) at original plane and (1 , -1) for point A'
--------------------------------------------------------------------------------------------------------