203k views
20 votes

\rm \lim \limits_(n \to \infty ) {n}^{ - (1)/(2) ( (n + 1)/(n) )} (1 * {2}^(2) * {3}^(2) * \dots * {n}^(n) {)}^{ \frac{1}{ {n}^(2) } }


\rule{200pt}{2pt}

\rm I= \sum \limits_(k = 1)^(98) \int_(k)^(k + 1) (k + 1)/(x (x+ 1)) \: dx, then \\
\rm[A] \phantom{gg}I>log_e99 \\ \\ \rm [B] \phantom{gg}I < log_e99 \\ \\ \rm[C] \phantom{hffgg} I < (49)/(50) \\ \\ \rm[D] \phantom{gfffg} I > (49)/(50) \\

User Fore
by
7.8k points

1 Answer

5 votes

Using the exp-log technique,


\displaystyle \lim_(n\to\infty) \frac{\left(1 * 2^2 * 3^3 * \cdots * n^n\right)^{\frac1{n^2}}}{n^{(n+1)/(2n)}}


\displaystyle = \exp\left(\lim_(n\to\infty) (\ln\left(\prod\limits_(k=1)^n k^k\right))/(n^2) - (n+1)/(2n) \ln(n)\right)\right)


\displaystyle = \exp\left(\lim_(n\to\infty) (\sum\limits_(k=1)^n k\ln(k))/(n^2) - (n+1)/(2n) \ln(n)\right)\right)

We have ln(k) = ln(k/n) + ln(n), and so we can rewrite the limand as


\displaystyle = \exp\left(\lim_(n\to\infty) \left(\frac1n \sum\limits_(k=1)^n \frac kn \ln\left(\frac kn\right) + (\ln(n))/(n^2) \sum_(k=1)^n 1 - (n+1)/(2n) \ln(n)\right)\right)

Then the first sum converges to a definite integral,


\displaystyle \lim_(n\to\infty) \frac1n \sum_(k=1)^n \frac kn \ln\left(\frac kn\right) = \int_0^1 x \ln(x) \, dx = -\frac14

while the remaining terms vanish since


\displaystyle (\ln(n))/(n^2) \sum_(k=1)^n 1 = (\ln(n))/(n^2) * \frac{n(n+1)}2 = (n+1)/(2n)\ln(n)

So the limit is
\boxed{e^(-1/4)}.

Since


\frac1{x(x+1)} = \frac1x - \frac1{x+1}

it's easy to show that the integral reduces to


\displaystyle \int_k^(k+1) (k+1)/(x(x+1)) \, dx = (k+1) \ln\left(((k+1)^2)/(k(k+2))\right)

so we can write the sum as


I = \displaystyle \sum_(k=1)^(98) \int_k^(k+1) (k+1)/(x(x+1)) \, dx = \sum_(k=2)^(99) k \ln\left((k^2)/(k^2-1)\right)

We have k²/(k² - 1) > 1 for all k, so that ln(k²/(k² - 1)) > ln(1) = 0. We can see the first 3 terms of the sum already exceed 1 > 49/50, so (D) is true.

Numerical computation of the sum suggests I < ln(99), but I have yet to come up with an analytical solution for this bound...

User Fenec
by
8.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories