180k views
1 vote
The diagram below a triangle PQR on a Cartesian plane. Given the distance a Q from origin is 6 units

If the gradient of straight line PQ is 4/3 calculate y-intercept​

1 Answer

7 votes

⸻➤
{\pink{\tt{Mixedfarming}}}
\huge{\underline{\mathtt{\red {A}\pink{N}\green{S}\blue{W}\purple {E}\orange{R}}}}
\huge{\underline{\mathtt{\red {A}\pink{N}\green{S}\blue{W}\purple {E}\orange{R}}}}
\huge{\underline{\mathtt{\red {A}\pink{N}\green{S}\blue{W}\purple {E}\orange{R}}}}
\huge{\underline{\mathtt{\red {A}\pink{N}\green{S}\blue{W}\purple {E}\orange{R}}}}
\huge{\underline{\mathtt{\red {A}\pink{N}\green{S}\blue{W}\purple {E}\orange{R}}}}
\huge{\underline{\mathtt{\red {A}\pink{N}\green{S}\blue{W}\purple {E}\orange{R}}}}
\huge{\underline{\mathtt{\red {A}\pink{N}\green{S}\blue{W}\purple {E}\orange{R}}}}
\huge{\underline{\mathtt{\red {A}\pink{N}\green{S}\blue{W}\purple {E}\orange{R}}}}
\sf\red{hope\:it\:helps\:you}
\huge\pink{\mid{\fbox{\tt{your\:QUESTION}}\mid}}
\huge\pink{\mid{\fbox{\tt{your\:QUESTION}}\mid}}
\huge\pink{\mid{\fbox{\tt{your\:QUESTION}}\mid}}
\huge\red{\mid{\underline{\overline{\textbf{Solution\:࿐}}}\mid}}


\huge\red{\mid{\underline{\overline{\textbf{Solution\:࿐}}}\mid}}


(a)/(b)
(a)/(b)
(a)/(b)
(a)/(b)[tex] \frac{a}{b}