219k views
0 votes
Solve equation for 5(x - 3) + 2 = 5(2x - 8) - 3​

User Nebkat
by
4.0k points

2 Answers

2 votes

Answer:


\boxed {\sf x=6}

Explanation:


\sf 5(x - 3) + 2 = 5(2x - 8) - 3

Use the Distributive property :


\boxed { \sf Multiply\: 5\: by \:x\: and \:5\: by\: 3:}


\sf 5x-15+2


\sf -15+2


\sf =-13


\sf 5x-13

______________________


\sf 5\left(2x-8\right)-3


\boxed {\sf Multiply\: 5 \: by \: 2x \: and \: 5\: by\: -8:}


\sf 10x-40-3


\sf -40-3=-43


\sf 10x-43

_______________


\sf 5x-13=10x-43


\boxed {\sf Add\: 13 \:to\: both\: sides:}


\sf 5x-13+13=10x-43+13


\sf 5x=10x-30


\boxed{\sf Subtract\: -10x\: from\: both\: sides:}


\sf 5x-10x=10x-30-10x


\sf -5x=-30


\boxed{\sf Divide \:both \:sides\: by \:-5:}


\sf \cfrac{-5x}{-5}=\cfrac{-30}{-5}


\sf x=6

___________________________

User Mwiegboldt
by
4.4k points
3 votes

Answer:

x = 6

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Distributive Property

Equality Properties

  1. Multiplication Property of Equality
  2. Division Property of Equality
  3. Addition Property of Equality
  4. Subtraction Property of Equality

Algebra I

  • Terms/Coefficients

Explanation:

Step 1: Define

Identify

5(x - 3) + 2 = 5(2x - 8) - 3

Step 2: Solve for x

  1. (Parenthesis) Distribute: 5x - 15 + 2 = 10x - 40 - 3
  2. Simplify [Order of Operations]: 5x - 13 = 10x - 43
  3. [Subtraction Property of Equality] Subtract 10x on both sides: -5x - 13 = -43
  4. [Addition Property of Equality] Add 13 on both sides: -5x = -30
  5. [Division Property of Equality] Divide -5 on both sides: x = 6
User AndersK
by
4.4k points