227k views
10 votes
Nonsense will be reported!!​

Nonsense will be reported!!​-example-1
User Siegfoult
by
4.2k points

1 Answer

10 votes

Answer:

3y-2=10

Explanation:

Given;

Which of the following does Not belong to the group?

2x > 5 - x

3(x-4)
\leq -23

3y - 2 = 10

a < 13a + 1

Solve;

Base on the given data, we can infer that "3y-2=10" does Not belong to the group. You can see that other have Python. Python has six comparison operators: less than ( < ), less than or equal to ( <= ), greater than ( > ), greater than or equal to ( >= ), equal to ( == ), and not equal to ( != ). While, "3y-2=10" doesn't have one.

As well as if you simplify/solve these other will be given as a fraction while "3y-2=10" answer is a whole number.

Solution of each given answer choice;

2x > 5 - x

Add x to both sides

2x + x > 5 - x + x

Simplify

3x > 5

Divide both sides by 3


(3x)/(3) > (5)/(3)

x
x=(5)/(3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3 ( x - 4)
\leq - 23


3\left(x-4\right)\le \:-23\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:x\le \:-(11)/(3)\:\\ \:\mathrm{Decimal:}&amp;\:x\le \:-3.66666\dots \\ \:\mathrm{Interval\:Notation:}&amp;\:(-\infty \:,\:-(11)/(3)]\end{bmatrix}

Divide both sides by 3


(3\left(x-4\right))/(3)\le (-23)/(3)

Simplify


x-4\le \:-(23)/(3)

Add 4 to both side


x-4+4\le \:-(23)/(3)+4

Simplify

x
\leq -(11)/(3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3y-2 = 10

Add 2 to both sides


3y-2+2=10+2

Simplify


3y=12

Divide both sides by 3


(3y)/(3)=(12)/(3)

Simplify

y = 4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

a>13a+1


a > 13a+1\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:a < -(1)/(12)\:\\ \:\mathrm{Decimal:}&amp;\:a < -0.08333\dots \\ \:\mathrm{Interval\:Notation:}&amp;\:\left(-\infty \:,\:-(1)/(12)\right)\end{bmatrix}

Subtract 13a from both sides


a-13a > 13a+1-13a

Simplify


-12a > 1

Multiply both sides by -1 (reverse the inequality)


\left(-12a\right)\left(-1\right) < 1\cdot \left(-1\right)

Simplify


12a < -1

Divide both sides by 12


(12a)/(12) < (-1)/(12)

Simplify


a < -(1)/(12)

Hence, Now you can infer that "3y-2=10" does not belong to the group.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~Learn with Lenvy~

User Juan Catalan
by
4.0k points