Answer:
3y-2=10
Explanation:
Given;
Which of the following does Not belong to the group?
2x > 5 - x
3(x-4)
-23
3y - 2 = 10
a < 13a + 1
Solve;
Base on the given data, we can infer that "3y-2=10" does Not belong to the group. You can see that other have Python. Python has six comparison operators: less than ( < ), less than or equal to ( <= ), greater than ( > ), greater than or equal to ( >= ), equal to ( == ), and not equal to ( != ). While, "3y-2=10" doesn't have one.
As well as if you simplify/solve these other will be given as a fraction while "3y-2=10" answer is a whole number.
Solution of each given answer choice;
2x > 5 - x
Add x to both sides
2x + x > 5 - x + x
Simplify
3x > 5
Divide both sides by 3
![(3x)/(3) > (5)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/btu9ujupxvci3bx475cc3zv5d8idmssi2o.png)
x
![x=(5)/(3)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rykh99mvzllxsjuvnw85l1nhxbtat1fznu.png)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3 ( x - 4)
- 23
![3\left(x-4\right)\le \:-23\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:x\le \:-(11)/(3)\:\\ \:\mathrm{Decimal:}&\:x\le \:-3.66666\dots \\ \:\mathrm{Interval\:Notation:}&\:(-\infty \:,\:-(11)/(3)]\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/9ytwodutxmrqcvd4gm8r6d2s5hh08lcq63.png)
Divide both sides by 3
![(3\left(x-4\right))/(3)\le (-23)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/fbs1awxb7exm7mbw1pofgfkazya4yd1lcq.png)
Simplify
![x-4\le \:-(23)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/3omwtksjaf0ednh8kku9c6x3fazdydqibl.png)
Add 4 to both side
![x-4+4\le \:-(23)/(3)+4](https://img.qammunity.org/2023/formulas/mathematics/college/pgnwx9siupwvfy7z6zhf4sc5bx22l7zgz5.png)
Simplify
x
![\leq -(11)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/v30916687clrkdtfgrjyyo3p0zue8igag4.png)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3y-2 = 10
Add 2 to both sides
![3y-2+2=10+2](https://img.qammunity.org/2023/formulas/mathematics/college/twqoj1glhmj1v754pyf1cpkc5zwgo9q0ya.png)
Simplify
![3y=12](https://img.qammunity.org/2023/formulas/mathematics/college/wcekxvfnimyowjcx36cbv4xtmlu7l603si.png)
Divide both sides by 3
![(3y)/(3)=(12)/(3)](https://img.qammunity.org/2023/formulas/mathematics/college/9qqam5phadjkhlf8dc3xn2nnp90jrhrioq.png)
Simplify
y = 4
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
a>13a+1
![a > 13a+1\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:a < -(1)/(12)\:\\ \:\mathrm{Decimal:}&\:a < -0.08333\dots \\ \:\mathrm{Interval\:Notation:}&\:\left(-\infty \:,\:-(1)/(12)\right)\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/wn3fzemicwkb00r1x0fuzzjajkrjdpb9kj.png)
Subtract 13a from both sides
![a-13a > 13a+1-13a](https://img.qammunity.org/2023/formulas/mathematics/college/l4xlca2hb5igzv0calab0alkwtggw9ocvu.png)
Simplify
![-12a > 1](https://img.qammunity.org/2023/formulas/mathematics/college/tydqrkrobvjvs61ty2dy367iz59576dgpr.png)
Multiply both sides by -1 (reverse the inequality)
![\left(-12a\right)\left(-1\right) < 1\cdot \left(-1\right)](https://img.qammunity.org/2023/formulas/mathematics/college/8s7na03p1f6ga54ywx48uh868ryvfx9w1c.png)
Simplify
![12a < -1](https://img.qammunity.org/2023/formulas/mathematics/college/cinsa359zskbhehr8vj0iysbx68cspc4s6.png)
Divide both sides by 12
![(12a)/(12) < (-1)/(12)](https://img.qammunity.org/2023/formulas/mathematics/college/uwq7kgwe8anacvel91iyzdufmyh2knivaq.png)
Simplify
![a < -(1)/(12)](https://img.qammunity.org/2023/formulas/mathematics/college/d89mfea6ry9k618h1lzxhuj66afkxam9ed.png)
Hence, Now you can infer that "3y-2=10" does not belong to the group.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~Learn with Lenvy~