1.9k views
4 votes
An excess of sodium carbonate, Na, CO3, in solution is added to a solution containing 17.87 g CaCl2. After performing the

experiment, 13.19 g of calcium carbonate, CaCO3, is produced. Calculate the percent yield of this reaction.

1 Answer

3 votes

Answer:

Approximately
81.84\%.

Step-by-step explanation:

Balanced equation for this reaction:


{\rm Na_(2)CO_(3)}\, (aq) + {\rm CaCl_(2)} \, (aq) \to 2\; {\rm NaCl}\, (aq) + {\rm CaCO_(3)}\, (s).

Look up the relative atomic mass of elements in the limiting reactant,
\rm CaCl_(2), as well as those in the product of interest,
\rm CaCO_(3):


  • \rm Ca:
    40.078.

  • \rm Cl:
    35.45.

  • \rm C:
    12.011.

  • \rm O:
    15.999.

Calculate the formula mass for both the limiting reactant and the product of interest:


\begin{aligned}& M({\rm CaCl_(2)}) \\ &= (40.078 + 2 * 35.45)\; {\rm g \cdot mol^(-1)} \\ &= 110.978\; \rm g \cdot mol^(-1)\end{aligned}.


\begin{aligned}& M({\rm CaCO_(3)}) \\ &= (40.078 + 12.011 + 3 * 15.999)\; {\rm g \cdot mol^(-1)} \\ &= 100.086\; \rm g \cdot mol^(-1)\end{aligned}.

Calculate the quantity of the limiting reactant (
\rm CaCl_(2)) available to this reaction:


\begin{aligned}n({\rm CaCl_(2)) &= \frac{m({\rm {CaCl_(2)})}}{M({\rm CaCl_(2)})} \\ &= (17.87\; \rm g)/(110.978\; \rm g \cdot mol^(-1)) \\ &\approx 0.161023\; \rm mol \end{aligned}.

Refer to the balanced equation for this reaction. The coefficients of the limiting reactant (
\rm CaCl_(2)) and the product (
{\rm CaCO_(3)}) are both
1. Thus:


\displaystyle \frac{n({\rm CaCO_(3)})}{n({\rm CaCl_(2)})} = 1.

In other words, for every
1\; \rm mol of
\rm CaCl_(2) formula units that are consumed,
1\; \rm mol\! of
\rm CaCO_(3) formula units would (in theory) be produced. Thus, calculate the theoretical yield of
\rm CaCO_(3)\! in this experiment:


\begin{aligned} & n(\text{${\rm CaCO_(3)}$, theoretical}) \\ =\; & n({\rm CaCl_(2)}) \cdot \frac{n({\rm CaCO_(3)})}{n({\rm CaCl_(2)})} \\ \approx \; & 0.161023\; {\rm mol} * 1 \\ =\; & 0.161023\; \rm mol\end{aligned}.

Calculate the theoretical yield of this experiment in terms of the mass of
\rm CaCO_(3) expected to be produced:


\begin{aligned} & m(\text{${\rm CaCO_(3)}$, theoretical}) \\ = \; & n(\text{${\rm CaCO_(3)}$, theoretical}) \cdot M(({\rm CaCO_(3)}) \\ \approx \; & 0.161023\; {\rm mol} * 100.086\; {\rm g \cdot mol^(-1)} \\ \approx \; & 16.1161\; \rm g \end{aligned}.

Given that the actual yield in this question (in terms of the mass of
\rm CaCO_(3)) is
13.19\; \rm g, calculate the percentage yield of this experiment:


\begin{aligned} & \text{percentage yield} \\ =\; & \frac{\text{actual yield}}{\text{theoretical yield}} * 100\% \\ \approx \; & \frac{13.19\; {\rm g}}{16.1161\; {\rm g}} * 100\% \\ \approx \; & 81.84\%\end{aligned}.

User Joshaber
by
4.3k points