197k views
4 votes
The line makes angles α, β and γ with x-axia and z-axis respectively then cos 2α + cos 2β + cos 2γ is equal to

(a) 2
(b) 1
(c) -2
(d) -1​

1 Answer

4 votes

Explanation:


\large\underline{\sf{Solution-}}

Given that lines makes an angle α, β, γ with x - axis, y - axis and z - axis respectively.

So, By definition of direction cosines,


\rm :\longmapsto\:l = cos \alpha


\rm :\longmapsto\:m = cos \beta


\rm :\longmapsto\:n = cos \gamma

So,


\rm :\longmapsto\: {l}^(2) + {m}^(2) + {n}^(2) = 1


\rm :\longmapsto\: {cos}^(2) \alpha + {cos}^(2) \beta + {cos}^(2) \gamma = 1

On multiply by 2 on both sides we get


\rm :\longmapsto\: 2{cos}^(2) \alpha + 2{cos}^(2) \beta + 2 {cos}^(2) \gamma = 2

can be further rewritten as


\rm :\longmapsto\: 2{cos}^(2) \alpha - 1 + 1 + 2{cos}^(2) \beta - 1 + 1 + 2 {cos}^(2) \gamma - 1 + 1 = 2


\rm :\longmapsto\: (2{cos}^(2) \alpha - 1)+ (2{cos}^(2) \beta - 1)+ (2 {cos}^(2) \gamma - 1) + 3= 2


\rm :\longmapsto\:cos2 \alpha + cos2 \beta + cos2 \gamma + 3= 2


\red{ \bigg\{ \sf \: \because \: cos2x = {2cos}^(2)x - 1 \bigg\}}


\rm :\longmapsto\:cos2 \alpha + cos2 \beta + cos2 \gamma= 2 - 3


\rm :\longmapsto\:cos2 \alpha + cos2 \beta + cos2 \gamma= - 1

Hence,


\bf\implies \:\boxed{\tt{ \: cos2 \alpha + cos2 \beta + cos2 \gamma = - 1 \: }}

So, option (d) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Direction cosines of a line segment is defined as the cosines of the angle which a line makes with the positive direction of respective axis.

The scalar components of unit vector always give direction cosines.

The scalar components of a vector gives direction ratios.

User Geddon
by
8.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories