197k views
4 votes
The line makes angles α, β and γ with x-axia and z-axis respectively then cos 2α + cos 2β + cos 2γ is equal to

(a) 2
(b) 1
(c) -2
(d) -1​

1 Answer

4 votes

Explanation:


\large\underline{\sf{Solution-}}

Given that lines makes an angle α, β, γ with x - axis, y - axis and z - axis respectively.

So, By definition of direction cosines,


\rm :\longmapsto\:l = cos \alpha


\rm :\longmapsto\:m = cos \beta


\rm :\longmapsto\:n = cos \gamma

So,


\rm :\longmapsto\: {l}^(2) + {m}^(2) + {n}^(2) = 1


\rm :\longmapsto\: {cos}^(2) \alpha + {cos}^(2) \beta + {cos}^(2) \gamma = 1

On multiply by 2 on both sides we get


\rm :\longmapsto\: 2{cos}^(2) \alpha + 2{cos}^(2) \beta + 2 {cos}^(2) \gamma = 2

can be further rewritten as


\rm :\longmapsto\: 2{cos}^(2) \alpha - 1 + 1 + 2{cos}^(2) \beta - 1 + 1 + 2 {cos}^(2) \gamma - 1 + 1 = 2


\rm :\longmapsto\: (2{cos}^(2) \alpha - 1)+ (2{cos}^(2) \beta - 1)+ (2 {cos}^(2) \gamma - 1) + 3= 2


\rm :\longmapsto\:cos2 \alpha + cos2 \beta + cos2 \gamma + 3= 2


\red{ \bigg\{ \sf \: \because \: cos2x = {2cos}^(2)x - 1 \bigg\}}


\rm :\longmapsto\:cos2 \alpha + cos2 \beta + cos2 \gamma= 2 - 3


\rm :\longmapsto\:cos2 \alpha + cos2 \beta + cos2 \gamma= - 1

Hence,


\bf\implies \:\boxed{\tt{ \: cos2 \alpha + cos2 \beta + cos2 \gamma = - 1 \: }}

So, option (d) is correct.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

Direction cosines of a line segment is defined as the cosines of the angle which a line makes with the positive direction of respective axis.

The scalar components of unit vector always give direction cosines.

The scalar components of a vector gives direction ratios.

User Geddon
by
4.2k points