63.2k views
17 votes
What is the distance between (-8, 5) and (6, 5)?

Enter your answer in the box.

___ Units

2 Answers

5 votes

Solution:

We know that:


\text{Distance }=\sqrt{(x_2-x_1)^(2) +(y_2-y_1)^(2)}

Finding the coordinates

  • (x₁,y₁) = (-8,5) = x₁ = -8; y₁ = 5
  • (x₂,y₂) = (6,5) = x₂ = 6; y₂ = 5

Substitute the coordinates into the distance formula.


\text{Distance }=\sqrt{(x_2-x_1)^(2) +(y_2-y_1)^(2)}


\rightarrow \text{Distance }=\sqrt{[(6- (-8)]^(2) +[5-5]^(2)}


\rightarrow \text{Distance }=\sqrt{[(6 + 8]^(2) +[0]^(2)}


\rightarrow \text{Distance }=\sqrt{[14]^(2)


\rightarrow \boxed{\text{Distance }=14 \ \text{units}}

User Toadfish
by
8.3k points
5 votes

Answer:

distance: 14

Step-by-step explanation:


\sf √((y_2-y_1)^2+(x_2-x_1)^2)

given:

  • (-8, 5) and (6, 5)

solve:


\sf \rightarrow √((5-5)^2+(6--8)^2)


\sf \rightarrow √((0)^2+(14)^2)


\sf \rightarrow √(14^2)


\sf \rightarrow 14

User Chinloong
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories