63.2k views
17 votes
What is the distance between (-8, 5) and (6, 5)?

Enter your answer in the box.

___ Units

2 Answers

5 votes

Solution:

We know that:


\text{Distance }=\sqrt{(x_2-x_1)^(2) +(y_2-y_1)^(2)}

Finding the coordinates

  • (x₁,y₁) = (-8,5) = x₁ = -8; y₁ = 5
  • (x₂,y₂) = (6,5) = x₂ = 6; y₂ = 5

Substitute the coordinates into the distance formula.


\text{Distance }=\sqrt{(x_2-x_1)^(2) +(y_2-y_1)^(2)}


\rightarrow \text{Distance }=\sqrt{[(6- (-8)]^(2) +[5-5]^(2)}


\rightarrow \text{Distance }=\sqrt{[(6 + 8]^(2) +[0]^(2)}


\rightarrow \text{Distance }=\sqrt{[14]^(2)


\rightarrow \boxed{\text{Distance }=14 \ \text{units}}

User Toadfish
by
3.7k points
5 votes

Answer:

distance: 14

Step-by-step explanation:


\sf √((y_2-y_1)^2+(x_2-x_1)^2)

given:

  • (-8, 5) and (6, 5)

solve:


\sf \rightarrow √((5-5)^2+(6--8)^2)


\sf \rightarrow √((0)^2+(14)^2)


\sf \rightarrow √(14^2)


\sf \rightarrow 14

User Chinloong
by
3.7k points