162k views
1 vote
(4x^2-1)*(x+3)-(2x^2-1)(2x+1)=x^2

User Lawris
by
7.8k points

1 Answer

4 votes

Answer: " x = 0.4191113191843072889 ; 0.4191113191843072889 " .

_________________________________________________

Explanation:

_________________________________________________

Given:

___________

" (4x² − 1)(x+3) − (2x² − 1)(2x+1) = x² " ; Solve for "x" ;

___________

First, factor:

"(4x² − 1)" ;

= 4 x² − 2x − 2x − 1 ;

→ 2 x(2x +1) − 1(2x +1) ;

= (2x − 1)(2x + 1) .

___________

Now, rewrite:

___________

" (4x² − 1)(x+3) − (2x² − 1)(2x+1) = x² " ;

by substituting for: "(4x² − 1)" ; as follows:

____________________

" (2x − 1)(2x + 1)(x+3) − (2x² − 1)(2x + 1) " ;

= " [(2x − 1)(x + 3) − (2x² − 1)] * (2x +1) = x² ;

___________

Start with:

"(2x − 1)(x + 3)" ;

___________

Note: "(a + b)(c+d) = ac + ad + bc + bd " ;

___________

→ (2x*x) + (2x*3) + (-1*x) + (-1*3) ;

= 2x² + 6x + (-1x) + (-3) ;

= 2x² + 6x − 1x − 3 ;

{Note: "Adding a negative is the same as "subtracting a positive."}.

→ Combine the "like terms":

+ 6x − 1x = + 5x ;

and rewrite:

= 2x² + 5x − 3 ;

Now, rewrite the entire equation:

→ [2x² + 5x − 3 − (2x² − 1)] * (2x +1) = x² ;

Now, consider this equation:

___________

→ [2x² + 5x − 3 − 1(2x² − 1)] * (2x +1) = x² ;

Now, let us consider the:

" − 1(2x² − 1)] " ;

Take note of the "distributive property of multiplication" :

___________

a(b + c) = ab + ac ;

___________

→ -1 [2x² + (-1) ] = (-1*2x²) + (-1* -1) ;

= - 2x² + 1 ;

Now, we can rewrite the entire equation:

___________

→ " (2x² + 5x − 3 − 2x² + 1) * (2x +1) = x² " ;

Now, consider the following part:

→ " (2x² + 5x − 3 − 2x² + 1) " ;

→ Combine the "like terms" :

+ 2x² − 2x² = 0 ;

− 3 + 1 = - 2 ;

→ and rewrite this part:

→ " ( 5x − 2) " ;

Now, we can rewrite the entire equation:

___________

→ " (5x − 2) (2x + 1) = x² " ;

___________

Now, for the "left-hand side" of the equation:

___________

Note: "(a + b)(c+d) = ac + ad + bc + bd " ;

___________

→ " (5x − 2) (2x + 1) = (5x*2x) + (5x*1) +(-2*2x) + (-2*1) ;

= 10x² + 5x + (-4x) + (-2) ;

= 10x² + 5x − 4x − 2 ;

→ "Combine the "like terms" :

+ 5x − 4x = + 1x '

→ and rewrite the expression:

= 10x² + 1x − 2 ;

Now, we can rewrite the entire equation:

___________

→ 10x² + 1x − 2 = x² ;

___________

Subtract: "x² " ; from Each Side of the equation:

___________

→ 10x² + 1x − 2 − x² = x² − x² ;

to get:

→ 9x² + 1x − 2 = 0 ; Solve for "x" ;

___________

This equation is written in "quadratic format":

→ " ax² + bx + c = 0 " ; {a ≠ 0} ;

→ in which: " a = 9 ; b = 1 ; c = -2 " ;

To solve for "x" using the "quadratic equation formula"

→ x = {-b ± √(b² − 4ac) } / {2a} ; Plug in our known values:

x = { -1 ± √(1² − 4(9)(-2) } / {2*9} ;

x = { -1 ± √[1 − (-72)} / {18} ;

x = { -1 ± √[1 +72} / {18} ;

x = (-1 ± √73) / 18 ;

___________

" x = (-1 +√73)/18 ; (-1 −√73) / 18 " .

___________

Using calculator:

___________

" x = 0.4191113191843072889 ; 0.4191113191843072889 " .

___________

Hope this helps!

Good luck to you!

___________

User Astre
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories