162k views
1 vote
(4x^2-1)*(x+3)-(2x^2-1)(2x+1)=x^2

User Lawris
by
3.8k points

1 Answer

4 votes

Answer: " x = 0.4191113191843072889 ; 0.4191113191843072889 " .

_________________________________________________

Explanation:

_________________________________________________

Given:

___________

" (4x² − 1)(x+3) − (2x² − 1)(2x+1) = x² " ; Solve for "x" ;

___________

First, factor:

"(4x² − 1)" ;

= 4 x² − 2x − 2x − 1 ;

→ 2 x(2x +1) − 1(2x +1) ;

= (2x − 1)(2x + 1) .

___________

Now, rewrite:

___________

" (4x² − 1)(x+3) − (2x² − 1)(2x+1) = x² " ;

by substituting for: "(4x² − 1)" ; as follows:

____________________

" (2x − 1)(2x + 1)(x+3) − (2x² − 1)(2x + 1) " ;

= " [(2x − 1)(x + 3) − (2x² − 1)] * (2x +1) = x² ;

___________

Start with:

"(2x − 1)(x + 3)" ;

___________

Note: "(a + b)(c+d) = ac + ad + bc + bd " ;

___________

→ (2x*x) + (2x*3) + (-1*x) + (-1*3) ;

= 2x² + 6x + (-1x) + (-3) ;

= 2x² + 6x − 1x − 3 ;

{Note: "Adding a negative is the same as "subtracting a positive."}.

→ Combine the "like terms":

+ 6x − 1x = + 5x ;

and rewrite:

= 2x² + 5x − 3 ;

Now, rewrite the entire equation:

→ [2x² + 5x − 3 − (2x² − 1)] * (2x +1) = x² ;

Now, consider this equation:

___________

→ [2x² + 5x − 3 − 1(2x² − 1)] * (2x +1) = x² ;

Now, let us consider the:

" − 1(2x² − 1)] " ;

Take note of the "distributive property of multiplication" :

___________

a(b + c) = ab + ac ;

___________

→ -1 [2x² + (-1) ] = (-1*2x²) + (-1* -1) ;

= - 2x² + 1 ;

Now, we can rewrite the entire equation:

___________

→ " (2x² + 5x − 3 − 2x² + 1) * (2x +1) = x² " ;

Now, consider the following part:

→ " (2x² + 5x − 3 − 2x² + 1) " ;

→ Combine the "like terms" :

+ 2x² − 2x² = 0 ;

− 3 + 1 = - 2 ;

→ and rewrite this part:

→ " ( 5x − 2) " ;

Now, we can rewrite the entire equation:

___________

→ " (5x − 2) (2x + 1) = x² " ;

___________

Now, for the "left-hand side" of the equation:

___________

Note: "(a + b)(c+d) = ac + ad + bc + bd " ;

___________

→ " (5x − 2) (2x + 1) = (5x*2x) + (5x*1) +(-2*2x) + (-2*1) ;

= 10x² + 5x + (-4x) + (-2) ;

= 10x² + 5x − 4x − 2 ;

→ "Combine the "like terms" :

+ 5x − 4x = + 1x '

→ and rewrite the expression:

= 10x² + 1x − 2 ;

Now, we can rewrite the entire equation:

___________

→ 10x² + 1x − 2 = x² ;

___________

Subtract: "x² " ; from Each Side of the equation:

___________

→ 10x² + 1x − 2 − x² = x² − x² ;

to get:

→ 9x² + 1x − 2 = 0 ; Solve for "x" ;

___________

This equation is written in "quadratic format":

→ " ax² + bx + c = 0 " ; {a ≠ 0} ;

→ in which: " a = 9 ; b = 1 ; c = -2 " ;

To solve for "x" using the "quadratic equation formula"

→ x = {-b ± √(b² − 4ac) } / {2a} ; Plug in our known values:

x = { -1 ± √(1² − 4(9)(-2) } / {2*9} ;

x = { -1 ± √[1 − (-72)} / {18} ;

x = { -1 ± √[1 +72} / {18} ;

x = (-1 ± √73) / 18 ;

___________

" x = (-1 +√73)/18 ; (-1 −√73) / 18 " .

___________

Using calculator:

___________

" x = 0.4191113191843072889 ; 0.4191113191843072889 " .

___________

Hope this helps!

Good luck to you!

___________

User Astre
by
4.4k points