Answer:
36%
Explanation:
Area of circle is
![\pi {r}^(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/si5jbdihau07r5j7jvcn4mf9asvxqna9a2.png)
If the radius is decreased by 20%. Then the radius will be
80% of the original radius.
So our radius is 0.8.
So our area is
![\pi(0.8r) {}^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/do4bxepe92slpdazeuymza666cbbqbmazk.png)
![\pi(0.64 {r}^(2) )](https://img.qammunity.org/2023/formulas/mathematics/college/wom4ajkht8qc6frf868i2v8pn3hibxtxs6.png)
Since pi is constant, the radius only really matters.
We went from
![1 {r}^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/io248q9ype74peyqr0fafkqg7z2nu249td.png)
to
![0.64 {r}^(2)](https://img.qammunity.org/2023/formulas/mathematics/college/c6kknbzo73ksesihuce8opn8g3a9erobd1.png)
So our area will decrease by 36%
Proof: Let the radius be 10.
So the area of circle will be
![\pi(10) {}^(2) = 100\pi](https://img.qammunity.org/2023/formulas/mathematics/college/u90pdm52uot5dum5eebu74hiiv8y5a41zj.png)
Let our other radius is 8 because 8 is a 20% decrease of the orginal radius
![\pi(8) {}^(2) = 64\pi](https://img.qammunity.org/2023/formulas/mathematics/college/ue5yigb6lw5uxteewviniw5a8i0verhqtj.png)
Next, we subtract the area to find decrease in area
![100\pi - 64\pi = 36\pi](https://img.qammunity.org/2023/formulas/mathematics/college/ynzawd6qjors53coua6vwu5d4gwwoo285x.png)
Since pi is constant, we can ignore it so our decrease in area is 36%