23.3k views
5 votes
Please answer this question​

Please answer this question​-example-1

1 Answer

0 votes

We are given the Indefinite integral ;


{:\implies \quad \displaystyle \sf \int (dx)/(x-x^(3))}

Take x common from denominator ;


{:\implies \quad \displaystyle \sf \int (dx)/(x(1-x^(2)))}

Now , Put ;


{:\implies \quad \displaystyle \sf x^(2)=u}

So that ;


{:\implies \quad \displaystyle \sf dx=(du)/(2√(u))\quad and\quad x=√(u)}

Now , putting the values ;


{:\implies \quad \displaystyle \sf \int (1)/(√(u)(1-u))* (1)/(2)* (du)/(√(u))}

Now , as constant can be taken out of the integrand, so now ;


{:\implies \quad \displaystyle \sf (1)/(2)\int (du)/(u(1-u))}

Using partial fraction decomposition, Rewrite the integral as ;


{:\implies \quad \displaystyle \sf (1)/(2)\int \left((1)/(u)+(1)/(1-u)\right)du}

As Integrals follow distributive property, so breaking the integral into two integrals, and continuing the integration


{:\implies \quad \displaystyle \sf (1)/(2)\left(\int (1)/(u)du+\int (1)/(1-u)du\right)}


{:\implies \quad \displaystyle \sf (1)/(2)\bigg\log+C}


u


+C

Putting value of u ;


{:\implies \quad \therefore \quad \underline{\underline +C}}

This is the required answer

Used Concepts :-


  • {\boxed\displaystyle \bf \int (1)/(x)dx=log}


  • {\boxed{\bf{log(a)-log(b)=log\left((a)/(b)\right)}}}
User Whitfin
by
3.2k points