146k views
4 votes
Part A
Find the inverse of the rational function f (x) = 2x/x+3,x ≠-3

Part A Find the inverse of the rational function f (x) = 2x/x+3,x ≠-3-example-1
User Vor
by
3.4k points

1 Answer

0 votes

If
f^(-1)(x) is the inverse of
f(x), then


f\left(f^(-1)(x)\right) = (2f^(-1)(x))/(f^(-1)(x)+3) = x

Solve for
f^(-1)(x). Since
f(x) is only defined for
x\\eq-3, this means that
f\left(f^(-1)(x)\right) is only defined for
f^(-1)(x)\\eq-3. Then the denominator is never zero, so we can multiply both sides by it:


(2f^(-1)(x))/(f^(-1)(x)+3) = x \\\\ (2f^(-1)(x))/(f^(-1)(x)+3) \cdot (f^(-1)(x)+3) = x(f^(-1)(x)+3) \\\\ 2f^(-1)(x) = x(f^(-1)(x)+3) \\\\ 2f^(-1)(x) = xf^(-1)(x) + 3x \\\\ 2f^(-1)(x) - xf^(-1)(x) = 3x \\\\ (2-x)f^(-1)(x) = 3x \\\\ \boxed{f^(-1)(x) = (3x)/(2-x)}

provided that x ≠ 2.

User MaheshShanbhag
by
3.0k points