Answer:
Step-by-step explanation:
From the case of well-stirred oil bath:
![51=l+50m+n(50^(2))\rightarrow 51=l+50m+2500n](https://img.qammunity.org/2023/formulas/engineering/college/n1d33ldjs0dajxwppc97cmfffzgv9xcjku.png)
At the ice point, both of the thermometers show the same scale:
![0 = l + m(0) + n(0^(2)) \rightarrow l = 0](https://img.qammunity.org/2023/formulas/engineering/college/cnb8n5lzyjjo7gb124xiwc682jad5jv50c.png)
At the steam point, again, both of the thermometers show the same scale:
![100 = 0 + m(100)+n(100^(2)) \rightarrow 100 = 100m + 10000n \rightarrow 1 = m + 100n](https://img.qammunity.org/2023/formulas/engineering/college/hvwo1fysfziinala9yz8ui4jifhgrr7goy.png)
By eliminating those equations, we find:
![51=50(1-100n)+2500n \rightarrow 51=50-500n+2500n \rightarrow 1 = 2000n](https://img.qammunity.org/2023/formulas/engineering/college/ezp38pnu0dgqtbdwjz7uw2qw9l07tanzhj.png)
so we can obtain that:
and
![m=1-100(0.0005)=1-0.05=0.95](https://img.qammunity.org/2023/formulas/engineering/college/71m7zsb5f0fhru8dpsuywzaf4j97e610kb.png)
Now, we have the complete description of the relation between A and B scale as:
![t_(A)=0.95t_(B)+0.0005t_(B)^(2)](https://img.qammunity.org/2023/formulas/engineering/college/xyqlqtadch50t3kk60rkq7l48go2sj5keu.png)
So, for
:
![25 = 0.95t_(B)+0.0005t_(B)^(2) \rightarrow 0.0005t_(B)^(2)+0.95t_(B)-25=0](https://img.qammunity.org/2023/formulas/engineering/college/m7lln66zajh4yml4gmdv2s7g7ya7e3agkt.png)
![t_(B)_(1,2)=\frac{-0.95\pm\sqrt{0.95^(2)-4(0.0005)(-25)}}{2(0.0005)}\approx-950\pm975](https://img.qammunity.org/2023/formulas/engineering/college/lfkd99ivyt0m94r7p6r13x8ybdljitjpij.png)
![t_(B)_(1)=25^(0)C \vee t_(B)_(2)=-1925^(0)C](https://img.qammunity.org/2023/formulas/engineering/college/rfvj037ozxtat8albllddnd3adk1ju1q5z.png)