221k views
1 vote
Solve the problem in the picture.

Solve the problem in the picture.-example-1

1 Answer

3 votes

Answer:

See below

Explanation:


\overline{X} \cdot\overline{Z} +\overline{X} \cdot Y + \overline{X} \cdot Z +XY


=\overline{X} (\overline{Z}+Y+Z) +XY

Recall that


\overline{Z} + Z = 1

and the identity
\boxed{A \cdot 1 = A}, therefore


\overline{X} (\overline{Z}+Y+Z) = \overline{X} because
\overline{Z}+Y+Z will always be
1.

Thus,


\overline{X} \cdot\overline{Z} +\overline{X} \cdot Y + \overline{X} \cdot Z +XY


=\overline{X} (\overline{Z}+Y+Z) +XY


= \overline{X} + XY

Now considering the Absorption Law,


( \overline{A} \cdot \overline{B}) + B = (\overline{A}+ B) \cdot (\overline{B} +B)

Once
\overline{B}+B=1, therefore


\overline{A} +B

we know


= \overline{X} + XY = \boxed{\overline{X} +Y}

User Water
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories