221k views
1 vote
Solve the problem in the picture.

Solve the problem in the picture.-example-1

1 Answer

3 votes

Answer:

See below

Explanation:


\overline{X} \cdot\overline{Z} +\overline{X} \cdot Y + \overline{X} \cdot Z +XY


=\overline{X} (\overline{Z}+Y+Z) +XY

Recall that


\overline{Z} + Z = 1

and the identity
\boxed{A \cdot 1 = A}, therefore


\overline{X} (\overline{Z}+Y+Z) = \overline{X} because
\overline{Z}+Y+Z will always be
1.

Thus,


\overline{X} \cdot\overline{Z} +\overline{X} \cdot Y + \overline{X} \cdot Z +XY


=\overline{X} (\overline{Z}+Y+Z) +XY


= \overline{X} + XY

Now considering the Absorption Law,


( \overline{A} \cdot \overline{B}) + B = (\overline{A}+ B) \cdot (\overline{B} +B)

Once
\overline{B}+B=1, therefore


\overline{A} +B

we know


= \overline{X} + XY = \boxed{\overline{X} +Y}

User Water
by
4.6k points