40.3k views
4 votes
Enter the factor under the radical

(a - b) √(a - b)


2 Answers

5 votes


\\ \rm\longmapsto (a-b)√(a-b)


\\ \rm\longmapsto (a-b)(a-b)^{(1)/(2)}


\\ \rm\longmapsto (a-b)^{1+(1)/(2)}


\\ \rm\longmapsto (a-b)^{(3)/(2)}

User Sahil Mittal
by
8.2k points
3 votes

Answer:


\dashrightarrow \: { \tt{(a - b) √(a - b) }} \\ \\ \dashrightarrow \: { \tt{ {(a - b)}^(1) {(a - b)}^{ (1)/(2) } }}

• from law of indices:


{ \boxed{ \rm{ ({x}^(n) )( {x}^(m) ) = {x}^((n + m)) }}}

therefore:


\dashrightarrow \: { \tt{ {(a - b)}^{(1 + (1)/(2) )} }} \\ \\ \dashrightarrow \: { \tt{ {(a - b)}^{ (3)/(2) } }}

User Santobedi
by
7.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories