40.3k views
4 votes
Enter the factor under the radical

(a - b) √(a - b)


2 Answers

5 votes


\\ \rm\longmapsto (a-b)√(a-b)


\\ \rm\longmapsto (a-b)(a-b)^{(1)/(2)}


\\ \rm\longmapsto (a-b)^{1+(1)/(2)}


\\ \rm\longmapsto (a-b)^{(3)/(2)}

User Sahil Mittal
by
4.6k points
3 votes

Answer:


\dashrightarrow \: { \tt{(a - b) √(a - b) }} \\ \\ \dashrightarrow \: { \tt{ {(a - b)}^(1) {(a - b)}^{ (1)/(2) } }}

• from law of indices:


{ \boxed{ \rm{ ({x}^(n) )( {x}^(m) ) = {x}^((n + m)) }}}

therefore:


\dashrightarrow \: { \tt{ {(a - b)}^{(1 + (1)/(2) )} }} \\ \\ \dashrightarrow \: { \tt{ {(a - b)}^{ (3)/(2) } }}

User Santobedi
by
3.4k points