13.9k views
15 votes
Midpoint of DE is M(2,7)
D(-1,6), E(____,_____)

2 Answers

6 votes

Answer:

  • E(5, 8)

Explanation:

Let E has coordinates of x and y.

Use midpoint equation to find x and y:

  • 2 = 1/2( - 1 + x) ⇒ 4 = - 1 + x ⇒ x = 4 + 1 ⇒ x = 5
  • 7 = 1/2(6 + y) ⇒ 14 = 6 + y ⇒ y = 14 - 6 ⇒ y = 8
User Irgend Son Hansel
by
8.2k points
11 votes

Answer:

E = (5, 8)

Explanation:

Midpoint between two points


\textsf{Midpoint}=\left((x_2+x_1)/(2),(y_2+y_1)/(2)\right)\quad \textsf{where}\:(x_1,y_1)\:\textsf{and}\:(x_2,y_2)\:\textsf{are the endpoints}}\right)

Given:


\textsf{Midpoint}=(2,7)


\textsf{Let endpoint }(x_1,y_1)=\textsf{Point D}=(-1,6)


\textsf{Let endpoint }(x_2,y_2)=\textsf{Point E}=(x_E,y_E)

Substitute the given values into the equation:


\begin{aligned}\textsf{Midpoint} & =\left((x_2+x_1)/(2),(y_2+y_1)/(2)\right)\\\implies (2, 7) & =\left((x_E-1)/(2),(y_E+6)/(2)\right)\\\end{aligned}

Therefore, the x-coordinate of point E is:


\implies (x_E-1)/(2)=2


\implies x_E-1=4


\implies x_E=5

The y-coordinate of point E is:


\implies (y_E+6)/(2)=7


\implies y_E+6=14


\implies y_E=8

Therefore, point E is (5, 8).

Midpoint of DE is M(2,7) D(-1,6), E(____,_____)-example-1
User Tamsler
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories