13.9k views
15 votes
Midpoint of DE is M(2,7)
D(-1,6), E(____,_____)

2 Answers

6 votes

Answer:

  • E(5, 8)

Explanation:

Let E has coordinates of x and y.

Use midpoint equation to find x and y:

  • 2 = 1/2( - 1 + x) ⇒ 4 = - 1 + x ⇒ x = 4 + 1 ⇒ x = 5
  • 7 = 1/2(6 + y) ⇒ 14 = 6 + y ⇒ y = 14 - 6 ⇒ y = 8
User Irgend Son Hansel
by
4.9k points
11 votes

Answer:

E = (5, 8)

Explanation:

Midpoint between two points


\textsf{Midpoint}=\left((x_2+x_1)/(2),(y_2+y_1)/(2)\right)\quad \textsf{where}\:(x_1,y_1)\:\textsf{and}\:(x_2,y_2)\:\textsf{are the endpoints}}\right)

Given:


\textsf{Midpoint}=(2,7)


\textsf{Let endpoint }(x_1,y_1)=\textsf{Point D}=(-1,6)


\textsf{Let endpoint }(x_2,y_2)=\textsf{Point E}=(x_E,y_E)

Substitute the given values into the equation:


\begin{aligned}\textsf{Midpoint} & =\left((x_2+x_1)/(2),(y_2+y_1)/(2)\right)\\\implies (2, 7) & =\left((x_E-1)/(2),(y_E+6)/(2)\right)\\\end{aligned}

Therefore, the x-coordinate of point E is:


\implies (x_E-1)/(2)=2


\implies x_E-1=4


\implies x_E=5

The y-coordinate of point E is:


\implies (y_E+6)/(2)=7


\implies y_E+6=14


\implies y_E=8

Therefore, point E is (5, 8).

Midpoint of DE is M(2,7) D(-1,6), E(____,_____)-example-1
User Tamsler
by
5.3k points