232k views
0 votes
Can you solve 27,28,39,30,31,32,33,34?

Can you solve 27,28,39,30,31,32,33,34?-example-1
User Mvbrakel
by
3.4k points

1 Answer

1 vote

Answer:

27. x^7

28. 4x^13

29. 1/f^4

30. x^5

31. 2x^14

32. (4y^3 x^2)^2

33. (2y/x)^6

Explanation:


27. \: \: \frac{ {x}^( - 1) }{ {x}^( - 8) } \\ \frac{ {x}^(8) }{ {x}^(1) } \\ {x}^(8 - 1) = {x}^(7) \\


28. \: \: \: \frac{ {52x}^(6) }{ {13x}^( - 7) } \\ \frac{ {52x}^(6) {x}^(7) }{13} \\ {4x}^(6 + 7) = {4x}^(13)


29. \: \: {f}^( - 3) ( {f}^(2) )( {f}^( - 3) ) \\ {f}^(( - 3) +2 + ( - 3) ) \\ {f}^( - 4) \\ \frac{1}{ {f}^(4) } \\


30. \: \: \frac{ {x}^( - 4) }{ {x}^( - 9) } \\ \frac{ {x}^(9) }{ {x}^(4) } \\ {x}^(9 - 4) = {x}^(5)


31. \: \: \frac{ {24x}^(6) }{ {12x}^( - 8) } \\ \frac{ {24x}^(6) {x}^(8) }{12} \\ {2x}^(6 + 8) = {2x}^(14) \\


32. \: \: \frac{ {3x}^(2) {y}^( - 3) }{ {12x}^(6) {y}^(3) } \\ \frac{ {3x}^(2) }{ {12x}^(6) {y}^(3) {y}^(3) } \\ \frac{ {x}^(2 - 6) }{ {4y}^(3 + 3) } \\ \frac{ {x}^( - 4) }{ {4y}^(6) } \\ \frac{1}{ {4y}^(6) {x}^(4) } = \frac{1}{({ {4y}^(3) {x}^(2) ) }^(2) }


33. \: \: {( {2x}^(3) {y}^( - 3)) }^( - 2) \\ {2x}^(3 * - 2) {y}^( - 3 * - 2) \\ {2x}^( - 6) {y}^(6) \\ \frac{ {2y}^(6) }{ {x}^(6) } \\ {( (2y)/(x) )}^(6) \\

User Uniknow
by
3.3k points