![\huge \boxed{\mathbb{QUESTION} \downarrow}](https://img.qammunity.org/2022/formulas/history/college/1jyfph24cxomkgaamjtwx4vsi2y95urtq7.png)
What is the factored form of 1,458x³ − 2?
A. 2(9x − 1)(81x² + 9x + 1)
B. 2(9x + 1)(81x² − 9x + 1)
C. (9x − 2)(81x² + 18x + 4)
D. (9x + 2)(81x² − 18x + 4)
![\large \boxed{\mathfrak{Answer \: with \: Explanation} \downarrow}](https://img.qammunity.org/2022/formulas/business/college/6rihqyi13zmt3iigtmkd6hstdpaj7k3civ.png)
![\sf \: 1458 x ^ { 3 } - 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/1rdext4pyg3dqyo3leownh88d5sa70u0tw.png)
Factor out 2 (common factor).
![\sf \: 2\left(729x^(3)-1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/duxpzestyjo1rsxi8c5s7eueygusdraz7m.png)
Consider
. Rewrite
as
. The difference of cubes can be factored using the rule:
.
![\sf\left(9x-1\right)\left(81x^(2)+9x+1\right)](https://img.qammunity.org/2022/formulas/mathematics/high-school/m8s2g1jwboqb8a3h3kk6bnp1mbxnoh27c7.png)
Rewrite the complete factored expression. Polynomial 81x²+9x+1 is not factored as it does not have any rational roots.
![\boxed{ \boxed{ \bf A) \: \: 2\left(9x-1\right)\left(81x^(2)+9x+1\right) }}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ixwntmge4fypa59ekpv185w8ixwdtzjnuj.png)