363,415 views
25 votes
25 votes
What is the simplified expression​

What is the simplified expression​-example-1
User Oleksii Volynskyi
by
2.9k points

2 Answers

16 votes
16 votes

Solution:


\rightarrow (4^(-3) * 3^(4) * 4^(2) )/(3^(5) * 4^(-2) )


\rightarrow 4^(-3 + 2) * 3^(4 - 5) * 4^(2) }


\rightarrow 4^(-1) * 3^(-1) * 16}


\rightarrow (1)/(4) * (1)/(3) * 16}


\rightarrow (1)/(12) * 16}


\rightarrow (16)/(12)


\rightarrow \boxed{\bold{(4)/(3) \tex\text{ (Option B)}}}

User Csguy
by
2.8k points
13 votes
13 votes

Answer:


\frac43

Explanation:


(4^(-3)\cdot3^4\cdot4^2)/(3^5\cdot4^(-2))

Separate like terms:


\implies (4^(-3)\cdot4^2)/(4^(-2))\cdot (3^4)/(3^5)

Use exponent rule
a^b \cdot a^c=a^((b+c)) :


\implies (4^((-3+2)))/(4^(-2))\cdot (3^4)/(3^5)


\implies (4^(-1))/(4^(-2))\cdot (3^4)/(3^5)

Use exponent rule
(a^b)/(a^c)=a^((b-c))


\implies 4^((-1--2))\cdot {3^((4-5))


\implies 4^(1)\cdot {3^(-1)

Use exponent rule
a^(-1)=(1)/(a)


\implies 4\cdot \frac13


\implies \frac43

User Estin Chin
by
2.4k points